
Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

 i

Joint Tactical Radio System Standard

Modem Hardware Abstraction Layer

Application Program Interface

Version: 2.13.2

26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013).

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). ii

Revision History

Version Authorization Description Last Modified Date

2.11.1 Preparation for public release

ICWG Approved

02-May-2007

2.11.2

<Draft>

 Misc. Redlines

Change Proposal:

Re-scoped MHALPhysicalDestination by

- Deprecating:
MHAL::PF_MHALPacketConsumer::MHALPhysicalDestinat

ion

- Adding

MHAL::MHALPhysicalDestination

- Changing addTxRoute Operation signature

to utilize re-scoped

MHALPhysicalDestination

- Updated MhalDevice.idl

20-Jul-2009

2.12

<Final Draft>

 JTRS Community Review:

- Added clarifying text to Section E.2.1,

MHAL RF Chain Coordinator

- Misc. Redlines

19-Aug-2009

2.12 ICWG Approved 27-Aug-2009

2.13 Preparation for public release

ICWG Approved

29-Jun-2010

2.13.1

<Draft>

 Technical Correction:

- Corrected LD for TXBLOCKED command

response

- Added missing response command for

TXSTAT command request

23-Jul-2010

2.13.1

<Final Draft>

 No further changes. 02-Feb-2011

2.13.1 No further changes.

ICWG Approved

29-Mar-2011

2.13.2 Preparation for public release

ICWG Approved

26-Jun-2013

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). iii

Table of Contents

A. MHAL ... 10

B. MHAL GPP API EXTENSION .. 28

C. MHAL DSP API EXTENSION .. 42

D. MHAL FPGA API EXTENSION ... 52

E. MHAL RF CHAIN COORDINATOR API EXTENSION 71

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). iv

Table of Contents

A. MHAL ... 10

A.1 Introduction... 10

A.1.1 Overview .. 11

A.1.2 Service Layer Description .. 12

A.1.3 Referenced Documents ... 12

A.1.3.1 Government Documents .. 12

A.1.3.2 Commercial Standards ... 12

A.2 Services .. 13

A.2.1 MHAL Communication Service... 13

A.2.1.1 Data Sink functions .. 13

A.2.1.2 Data Source Functions ... 14

A.2.1.3 MHAL Message ... 14

A.2.2 MHAL Messaging Between Logical Destinations ... 16

A.2.2.1 Push Only Communication Service ... 16

A.2.2.2 MHAL Communications Flow Control ... 16

A.3 Service Primitives and Attributes ... 17

A.4 Interface Definitions ... 17

A.5 Data Types and Exceptions .. 17

A.5.1 MHAL Communication Routing Types ... 17

A.5.1.1 MhalByte Type ... 17

A.5.2 Common MHAL Message Construction Macros ... 17

A.5.2.1 buildMhalMsg Macro .. 17

A.5.2.2 Mhal_put8, Mhal_put16 & Mhal_put32 Macros ... 18

A.5.2.3 Mhal_putMem Macro .. 19

A.5.2.4 endBuildMhalMsg Macro .. 20

A.5.3 Common MHAL Message Extraction Macros ... 21

A.5.3.1 MhalParseStruct Structure ... 21

A.5.3.2 accessMhalMsg Macro ... 22

A.5.3.3 Mhal_get8, Mhal_get16 & Mhal_get32 Macros .. 22

A.5.3.4 Mhal_Length Macro ... 22

A.5.3.5 MhalMsgIndex Macro .. 23

A.5.3.6 Mhal_EOM Macro ... 23

A.5.3.7 MhalMsgField Macro... 23

A.5.3.8 endAccessMhalMsg Macro .. 24

A.5.3.9 accessMhalField Macro ... 24

A.5.3.10 endAccessMhalField Macro ... 25

Appendix A.A – Abbreviations and Acronyms... 26

Appendix A.B – Performance Specification .. 27

B. MHAL GPP API EXTENSION .. 28

B.1 Introduction ... 28

B.1.1 Overview .. 28

B.1.2 Service Layer Description... 29

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). v

B.1.2.1 MHAL Port Connections.. 29

B.1.2.2 Modes of Service .. 29

B.1.2.3 Service States ... 29

B.1.2.4 MHAL State Diagram .. 29

B.2 Services ... 31

B.2.1 Provide Services ... 31

B.2.2 Use Services ... 32

B.2.3 Interface Modules ... 33

B.2.3.1 MHAL .. 33

B.3 Service Primitives and Attributes .. 34

B.3.1 MHAL::MHALPacketConsumer.. 34

B.3.1.1 pushPacket Operation... 34

B.3.2 MHAL::PF_MHALPacketConsumer ... 35

B.3.2.1 addTxRoute Operation .. 35

B.3.3 MHAL::WF_MHALPacketConsumer.. 36

B.3.3.1 getRxRoutes Operation .. 36

B.4 IDL ... 37

B.4.1 MhalDevice IDL ... 37

B.5 Data Types and Exceptions .. 39

B.5.1 MHAL Types .. 40

B.5.1.1 MHAL::MHALPhysicalDestination Type ... 40

B.5.2 MHAL::PF_MHALPacketConsumer Types .. 40

B.5.2.1 MHAL::PF_MHALPacketConsumer::MHALPhysicalDestination Type

<Deprecated> .. 40

B.5.3 MHAL::WF_MHALPacketConsumer Types ... 40

B.5.3.1 MHAL::WF_MHALPacketConsumer::RxRouteSequence Type 40

Appendix B.A – Abbreviations and Acronyms ... 41

Appendix B.B – Performance Specification .. 41

C. MHAL DSP API EXTENSION .. 42

C.1 Introduction... 42

C.1.1 Overview .. 42

C.2 Services .. 43

C.2.1 MHAL Communication Routing Module .. 43

C.2.2 MHAL Message In-Use Module (optional) ... 43

C.3 Service Primitives and Attributes ... 44

C.3.1 MHAL Communication Routing .. 44

C.3.1.1 Mhal_Comm Function .. 44

C.3.1.2 reroute_LD_sink Function ... 45

C.3.1.3 LD_of Function .. 46

C.3.2 MHAL Message In-Use (optional) ... 47

C.3.2.1 setMsgInUse Function .. 47

C.3.2.2 clrMsgInUse Function .. 48

C.3.2.3 isMsgInUse Function ... 49

C.4 Interface Definitions ... 50

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). vi

C.5 Data Types and Exceptions .. 50

C.5.1 MHAL Communication Routing Types ... 50

C.5.1.1 funPtr Type ... 50

Appendix C.A – Abbreviations and Acronyms... 51

Appendix C.B – Performance Specification .. 51

D. MHAL FPGA API EXTENSION ... 52

D.1 Introduction... 52

D.1.1 Overview .. 52

D.1.2 Service Layer Description .. 52

D.1.2.1 MHAL FPGA Signals .. 52

D.1.2.2 MHAL FPGA Timing .. 57

D.2 Services .. 64

D.3 Service Primitives and Attributes ... 64

D.4 Entity Definitions .. 64

D.4.1 MHAL FPGA Transmit Node – Multi-Depth FIFO Entity Description 64

D.4.2 MHAL FPGA Receive Node – Multi-Depth FIFO Entity Description 65

D.4.3 MHAL FPGA Receive Node – Single-Depth FIFO Entity Description 66

D.4.4 MHAL FPGA Receive Node – RAM Entity Description .. 67

D.4.5 MHAL FPGA Receive Node – N-Word Register Entity Description 68

D.4.6 MHAL FPGA Receive Node – Strobe Entity Description ... 69

D.5 Data Types and Exceptions .. 69

Appendix D.A – Abbreviations and Acronyms... 70

Appendix D.B – Performance Specification .. 70

E. MHAL RF CHAIN COORDINATOR API EXTENSION 71

E.1 Introduction ... 71

E.1.1 Overview ... 71

E.2 Services ... 72

E.2.1 MHAL RF Chain Coordinator .. 72

E.2.2 Sink Functions .. 73

E.2.3 Source Functions ... 74

E.3 Service Primitives and Attributes .. 75

E.3.1 General Sink Functions .. 75

E.3.1.1 RFC_DefModulationMode Command ... 75

E.3.1.2 RFC_ModulationMode Command ... 77

E.3.1.3 RFC_RxAGCAttackTime Command (optional) .. 78

E.3.1.4 RFC_RxAGCDecayTime Command (optional) .. 79

E.3.1.5 RFC_TxALCAttackTime Command ... 80

E.3.1.6 RFC_TxALCDecayTime Command .. 81

E.3.1.7 RFC_TxEnvDecayTime Command ... 82

E.3.1.8 RFC_TxEnvRiseTime Command .. 83

E.3.1.9 RFC_ChannelFrequency Command ... 84

E.3.1.10 RFC_ChannelRxModeSet Command .. 85

E.3.1.11 RFC_ChannelTxModeSet Command ... 86

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). vii

E.3.1.12 RFC_TxPower Command .. 87

E.3.1.13 RFC_ChannelTxKeyDisable Command .. 88

E.3.1.14 RFC_ChannelTxKeyEnable Command ... 89

E.3.1.15 RFC_ConnectTxBlock Command.. 90

E.3.1.16 RFC_MasterExecuteNow Command ... 91

E.3.1.17 RFC_ReceiverGainControl Command ... 92

E.3.2 Supervisory Sink Functions .. 93

E.3.2.1 RFC_ChannelStandbyModeSet Command .. 93

E.3.2.2 RFC_TxBusyStatusRequest Command .. 94

E.3.3 General Source Functions ... 95

E.3.3.1 RFC_TxBlocked Command ... 95

E.3.3.2 RFC_TxBusyStatusResponse Command ... 96

E.4 Interface Definitions ... 97

E.5 Data Types and Exceptions .. 97

Appendix E.A – Abbreviations and Acronyms ... 98

Appendix E.B – Performance Specification .. 98

Appendix E.C – Multi-Command Message Example ... 98

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). viii

Lists of Figures
FIGURE 1 – MHAL API REFERENCE DEPLOYMENT DIAGRAM ..11

FIGURE 2 – STANDARD MESSAGE STRUCTURE FOR MHAL COMMUNICATION14

FIGURE 3 – MHAL PORT DIAGRAM ...29

FIGURE 4 – MHAL STATE DIAGRAM ...30

FIGURE 5 – MHAL INTERFACE CLASS DIAGRAM ...33

FIGURE 6 – MHAL COMPONENT DIAGRAM ..39

FIGURE 7 – MULTI-DEPTH FIFO TRANSMIT COMMUNICATION DEVICE53

FIGURE 8 – MULTI-DEPTH FIFO RECEIVE COMMUNICATION DEVICE54

FIGURE 9 – SINGLE-DEPTH FIFO RECEIVE COMMUNICATION DEVICE55

FIGURE 10 – RAM RECEIVE COMMUNICATION DEVICE ...55

FIGURE 11 – N-WORD REGISTER RECEIVE COMMUNICATION DEVICE56

FIGURE 12 – STROBE RECEIVE COMMUNICATION DEVICE ...57

FIGURE 13 – REFERENCE TIMING DIAGRAM FOR MULTI-DEPTH FIFO TRANSMIT NODE58

FIGURE 14 – REFERENCE TIMING DIAGRAM FOR MULTI-DEPTH FIFO RECEIVE NODE59

FIGURE 15 – REFERENCE TIMING DIAGRAM FOR SINGLE-DEPTH FIFO RECEIVE NODE60

FIGURE 16 – REFERENCE TIMING DIAGRAM FOR RAM RECEIVE NODE61

FIGURE 17 – REFERENCE TIMING DIAGRAM FOR N-WORD RECEIVE REGISTER62

FIGURE 18 – REFERENCE TIMING DIAGRAM FOR A STROBE ...63

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). ix

List of Tables
TABLE 1 – MHAL MESSAGE FIELD SUMMARY ...14

TABLE 2 – MHAL DEVICE PROVIDE SERVICE INTERFACE ...31

TABLE 3 – MHAL USE SERVICE INTERFACE ...32

TABLE 4 – MHAL PERFORMANCE SPECIFICATION ...41

TABLE 5 – MHAL RF CHAIN COORDINATOR GENERAL SINK FUNCTION INTERFACE73

TABLE 6 – MHAL RF CHAIN COORDINATOR SUPERVISORY SINK FUNCTION INTERFACE73

TABLE 7 – MHAL RF CHAIN COORDINATOR GENERAL SOURCE FUNCTION INTERFACE74

TABLE 8 – EXAMPLE MULTI-MESSAGE COMMAND STRUCTURE ..98

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 10

A. MHAL

A.1 INTRODUCTION
This API provides information to the software developer to utilize the Modem Hardware Abstraction

Layer (MHAL) interfaces in the waveform target configurations.

The MHAL API abstracts the JTR channel modem interfaces from the application software. The MHAL

API supports communications between application components hosted on General Purpose Processors

(GPPs), Modem Digital Signal Processors (DSPs) and/or Modem Field Programmable Gate Arrays

(FPGAs).

For the purposes of this API the following applies to processor naming conventions:

 A GPP represents a CORBA capable processor (This could be a DSP that supports CORBA.)

 A DSP represents a C capable processor, but does not provide CORBA capability.

 An FPGA represents a HDL capable processor, again without CORBA capability.

The concept of the MHAL API is to provide a consistent host environment for waveform applications

and waveforms across all JTRS platforms. Because the waveform-side interfaces are presented by the

MHAL API, abstraction elements remains the same from platform to platform, thus waveform and

application components can be ported readily between JTR sets. The platform-side interfaces of the

MHAL are defined by the JTR set for its particular architecture and mission. This document defines a

common set of MHAL services and interfaces required by most JTR sets.

From one MHAL Computational Element (CE) (i.e. GPP, FPGA, or DSP), it is possible to access any of

the other CEs (i.e. FPGA, DSP, and RF units) using the routing service defined in A.2.1 MHAL

Communication Service. The MHAL message format is the same for all MHAL Computational

Elements (CE) and is defined in A.2.1.3.1 MHAL Message Structure. The MHAL GPP is the Software

Communications Architecture (SCA) CF::Device interface (see reference [3]) and is defined in section B

MHAL GPP API Extension. Because the DSP environment does not readily support dynamic linkable

objects, the MHAL DSP is a library of standardized components that are linked into the waveform code at

build time. The external interfaces and transport are JTR set defined, but the exposed interfaces to DSP

waveform components are consistent across all JTRS products and are defined in section C MHAL DSP

API Extension. Likewise the MHAL FPGA consists of an FPGA entity library that is linked into a

waveform build. The JTR set interfaces are unique, but the interfaces exposed to waveform components

are consistent across the JTR products and are defined in section D MHAL FPGA API Extension.

Figure 1 shows a reference deployment of the MHAL API. The MHAL API does not specify the

number of Computational Elements a JTR platform shall provide. The MHAL API does not specify the

platform specific transport, implementation or hardware architecture.

The MHAL API does specify the MHAL protocol interfaces (i.e. Data Sink and Data Source functions

highlighted in Figure 1) of different Computational Elements for communication between the waveform

and hardware.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 11

Platform - Specific
Transport

Platform - Specific
Transport

Platform - Specific
Transport

MHAL Computational Element

MHALDevice

MHAL_Comm

Platform - Specific
Transport

Platform - Specific
Transport

Platform - Specific
Transport

MHAL Computational Element

ComponentA ComponentB

Platform - Specific
Transport

Platform - Specific
Transport

Platform - Specific
Transport

MHAL Computational Element

ModuleX ModuleY

Platform - Specific
Transport

Platform - Specific
Transport

Platform - Specific
Transport

Computational Element

MHALDevice

Platform - Specific
Transport

Platform - Specific
Transport

Platform - Specific
Transport

Computational Element

ComponentA ComponentB

Platform - Specific
Transport

Platform - Specific
Transport

Platform - Specific
Transport

Computational Element

ModuleX ModuleY

RF

Amplifier

Cosite

Resource

Antenna

Resource

RF

Amplifier

Cosite

Resource

Antenna

Resource

RF

Amplifier

Cosite

Resource

Antenna

Resource

MHAL GPP [n*] MHAL FPGA Library [n*] MHAL DSP Library [n*]

Data Sink
Functions

Data Source

Functions
Data Sink
Functions

Data Sink
Functions

Data Source

Functions

Data Source

Functions

MHAL_Comm MHAL_Comm MHAL_Comm

Figure 1 – MHAL API Reference Deployment Diagram

A.1.1 Overview

This document contains as follows:

a. Section A.1, Introduction, of this document contains the introductory material regarding the

Overview, Service Layer description, and Referenced Documents of this document.

b. Section A.2, Services, provides summary of service uses.

c. Section A.3, Service Primitives and Attributes

d. Section A.4, Interface Definitions

e. Section A.5, Data Types and Exceptions

f. Appendix A.A – Abbreviations and Acronyms

g. Appendix A.B – Performance Specification

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 12

A.1.2 Service Layer Description
Not applicable

A.1.3 Referenced Documents
The following documents of the exact issue shown form a part of this specification to the extent specified

herein.

A.1.3.1 Government Documents

The following documents are part of this specification as specified herein.

A.1.3.1.1 Specifications

A.1.3.1.1.1 Federal Specifications

None

A.1.3.1.1.2 Military Specifications

None

A.1.3.1.2 Other Government Agency Documents

[1] JTRS Standard, “JTRS Standard CORBA Types,” JPEO, Version 1.0.2

[2] JTRS Standard, “Packet API,” JPEO, Version 2.0.2

[3] JTRS Standard, “Software Communications Architecture (SCA),” JPEO, Version 2.2.2

A.1.3.2 Commercial Standards

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 13

A.2 SERVICES

A.2.1 MHAL Communication Service
MHAL Communication Service is provided by a MHAL Communications Function working in

conjunction with the MHAL Interface Components. MHAL Interface Components provide the message

transport and an MHAL Communications Function provides an abstracted message routing function.

Waveforms shall use the MHAL Communications Service for all data and control flowing between

software components residing in different CEs where at least one CE does not support CORBA.

MHAL Interface Components may consist of Software (SW) Drivers and FPGA Interfaces. Both provide

the same system function. An FPGA Interface includes a mechanization of the desired physical interface

whereas a SW Driver manipulates interface HW provided by the SW’s host processor (i.e. GPP or DSP).

A Data Source launches messages by calling an MHAL Communications Function and a Data Sink

receives messages by being called by an MHAL Communications Function. The MHAL Communication

Service provides an asynchronous variable length messaging service between Data Sources and Data

Sinks. Communicating Data Sources and Sinks may be located in separate CEs or within the same CE.

If communicating within the same CE, it is not required to use the MHAL Communications Service.

Data Sink & Source Functions for the RF Chain Coordinator are defined in section E MHAL RF Chain

Coordinator API Extension.

A.2.1.1 Data Sink functions

A “sink function” is defined as the translation of the MHAL message into the expected behavior

associated with message parameters. An MHAL supplied sink function can process the message or route

the message to another CE. A Waveform supplied sink function is expected to process the message as

soon as possible. Sink functions are always associated with a logical destination with the association

being dependent on the CE where the message is sourced.

As each CE has a different approach to causing the sink process to be executed, it is necessary to

consider the call in a generic form. All callable Data Sink Functions have the following generic form (in

C) where developers replace DataSinkFunctionX with a component specific function:

void DataSinkFunctionX (byte* MessagePointer);

Note: MessagePointer points to the least significant byte of the LD element of the message to be

processed.

The SCA-compliant CORBA MHAL API for GPP uses a pushPacket(…) call whereas function calls on

the DSP are serviced through function Mhal_Comm(…). In the FPGA interfaces, a receive node

contains a signal interface that is asserted when a complete message is received. Callable Data Sinks

Functions include:

 GPP to GPP; DSP; FPGA; external RF Data Sink Functions via a pushPacket() call

 DSP to GPP, DSP, FPGA, external RF Data Sink Functions via an Mhal_Comm() call

 Waveform Application software Data Sink Functions using the same interface as Data Sink

functions

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 14

 In general; any Data Sink function callable by or through the MHAL

A.2.1.2 Data Source Functions

A Data Source Function is defined as the execution thread that issues an MHAL message. The MHAL

message may be the result of performing behavior associated with waveform’s API or it may be the direct

result of processing a received MHAL message. In this latter case, the Data Source Function is also a

sink function. The distinction of a sink function versus a source function is important on how the MHAL

message is processed by the communication service. MHAL source functions can exist on any CE.

A.2.1.3 MHAL Message

A.2.1.3.1 MHAL Message Structure

All messages transported by the MHAL have the structure depicted in Figure 2.

Logical Destination

(15 Bits)

Length

IU

Payload

Most Significant Bit

Least Significant Bit

Figure 2 – Standard Message Structure for MHAL Communication

MHAL message structure includes the information required to maintain an orderly processing of message

buffers. The value for In-Use (IU) bit is used by the MHAL for internal message flow control. The

resulting Logical Destination consists of 15 bits. The message payload may be zero bytes to

MaxMessageLength - 4 bytes in length. An MHAL message field summary is detailed in Table

1. All data is least significant bit first and byte first.

Table 1 – MHAL Message Field Summary

Message Field Name Bit Location Length Valid Range

Logical Destination (LD) 0 to 14 15 bits 0 to 2^15-1

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 15

Message Field Name Bit Location Length Valid Range

In-Use (IU) 15 1 bit 0 or 1

Length 16 to 31 16 bits 0 to 2^16-5

Payload 32 to (2^16-31) 2^16-8 bytes N/A

Note: Waveforms must consider the latency impact on the design when large messages are used.

A.2.1.3.1.1 MHAL Message IU Bit

The MHAL Message IU Bit is for Data Sinks and Data Sources that share memory and is not for use

across CEs that do not. The IU bit is used as an In-Use bit and may be ignored by the user. The IU bit

should be utilized when the message buffer memory is shared between a Data Source and targeted Data

Sink. The internal transport layer uses the IU bit to signal when the Data Sink has completed processing

a MHAL message.

Data Sinks must be required to inform MHAL that the message pointer is In-Use before returning from

the function.

For the MHAL DSP access functions are provided to allow waveforms to employ the IU bit (see C.2.2

MHAL Message In-Use Module (optional)).

A.2.1.3.1.2 MHAL Message Logical Destination

The Logical Destination (LD) is used to route messages to destination Data Sink functions. Every target

Data Sink function is associated with a LD. Each LD represents an interface and does not necessarily

define a one-to-one mapping to a function. A LD can represent a single DSP function or FPGA node, or

it can represent a collection of functions or nodes that can be signaled concurrently.

Each LD is an integer constant whose value may change from build to build but whose symbolic

reference is fixed. LDs are globally defined across all CE domains.

The LD shall be referenced symbolically in user source code (C or VHDL) so that its value may change

without impacting user source code.

A.2.1.3.1.3 MHAL Message MaxMessageLength

The Maximum Message Length is a modifiable variable with an upper range of 2^16 bytes-4.

The minimum payload length is zero bytes. Often this 0 byte payload is referred to as a soft event.

The message length limitation is a suggested convention that should be followed to assure adequate

system communications agility. Since several source-sink pairs may be configured to communicate over

the same physical interface, a relatively modest maximum message length assures that each source gets a

chance to deliver its message in a timely fashion.

A.2.1.3.2 MHAL Message Byte Orientation

MHAL Messages are encoded using Little-Endian byte orientation. A multiple byte data element is

ordered least significant byte (LSB) to most significant byte (MSB) in order of increasing address. A

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 16

pointer referencing this data element points to the least significant byte or lowest address occupied by the

data element.

This document recommends that the host FPGA and DSP are configured to be Little-Endian so that data

marshalling will not be required in these CEs.

If it is not possible to constrain the CE Endian orientation the SW written for the CE must build MHAL

Messages in an Endian-Independent manner. In order for GPP SW to be portable, it must always marshal

the data in a way that does not assume a particular byte orientation. It must build the MHAL message

element by element with each byte in the proper order.

A.2.1.3.3 MHAL Message Processing

Data Source Functions provide all message pre-processing. Data Sink Functions access the data in these

buffers by using the MessagePointer parameter passed to them.

A.2.1.3.4 MHAL Message Persistence

Messages held by a Data Source have finite guaranteed persistence.

A.2.2 MHAL Messaging Between Logical Destinations

A.2.2.1 Push Only Communication Service

The MHAL Communication Service shall provide a Push-Only communications service. Data can be

“written” to a destination but cannot be directly “read” in one operation.

A.2.2.2 MHAL Communications Flow Control

MHAL flow control is accomplished in the Data Sink Functions.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 17

A.3 SERVICE PRIMITIVES AND ATTRIBUTES
None

A.4 INTERFACE DEFINITIONS
None

A.5 DATA TYPES AND EXCEPTIONS

A.5.1 MHAL Communication Routing Types

A.5.1.1 MhalByte Type

Defines a type used to declare a byte of data in an MHAL message

A.5.1.1.1 Synopsis

#define MhalByte unsigned char

A.5.2 Common MHAL Message Construction Macros

A.5.2.1 buildMhalMsg Macro

This macro initializes the header of an MHAL message. This macro can set up a processing block within

the function using it. It must be terminated with the endBuildMhalMsg() macro. This is a non-

reentrant macro.

A.5.2.1.1 Synopsis

#define buildMhalMsg (messagePointer, LogicalDestination)

A.5.2.1.2 Arguments

Parameter Name Description

messagePointer Address to a region of memory where the MHAL message is to reside

LogicalDestination Logical destination identifier for the targeted Data Sink Function.

A.5.2.1.3 Return Value

Pointer to first byte in payload to be written.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 18

A.5.2.2 Mhal_put8, Mhal_put16 & Mhal_put32 Macros

This macro stores the LSB n-bits of value into the next available byte(s) available in the message

declared with the buildMhalMsg macro. After any Mhal_putn macro call the next available byte

position in the message is set to the first byte after the data just written.

Mhal_put8 - least significant 8 bits moved into 1 byte

Mhal_put16 - least significant 16 bits moved into 2 bytes

Mhal_put32 - 32 bits moved into 4 bytes

A.5.2.2.1 Synopsis

#define Mhal_put8 (value)

#define Mhal_put16 (value)

#define Mhal_put32 (value)

A.5.2.2.2 Arguments

Parameter Name Description

value Data to be passed in the message.

A.5.2.2.3 Return Value

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 19

A.5.2.3 Mhal_putMem Macro

This macro can be used to copy a block of memory to the MHAL message currently being constructed.

Similar to the standard memcpy function, this function will copy a block of data from sourceData of

length size to the MHAL message. This function is useful for text strings. If the processor is Little

Endian format this macro can be used to copy a structure.

A.5.2.3.1 Synopsis

#define Mhal_putMem(sourceData, size)

A.5.2.3.2 Arguments

Parameter Name Description

sourceData Address to a region of memory that contains the data being passed in the

message

size Size in bytes of the data block being copied

A.5.2.3.3 Return Value

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 20

A.5.2.4 endBuildMhalMsg Macro

This macro calculates the length of the MHAL message and stores it in the MHAL header. This ends the

construction of a particular MHAL message.

A.5.2.4.1 Synopsis

#define endBuildMhalMsg()

A.5.2.4.2 Arguments

None

A.5.2.4.3 Return Value

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 21

A.5.3 Common MHAL Message Extraction Macros
All MHAL extraction macros except accessMhalMsg and endAccessMhalMsg macro can be used

within the block structure of accessMhalField – endAccessMhalField.

A.5.3.1 MhalParseStruct Structure

This structure defines a structure for extracting data from an MHAL message. This structure is used to

manage the extraction of data from an MHAL message. It is created within the call to the

accessMhalMsg() operation. The names of the fields are such that a developer using standard coding

practices would not select the name, thus avoiding name conflicts with developer code.

A.5.3.1.1 Synopsis

typedef struct {

 MhalByte* MsgptR;

 MhalByte* MsgnbP;

} MhalParseStruct;

A.5.3.1.2 Attributes

Struct Attributes Type Valid Range Description

MhalParseStruct MsgptR MhalByte* N/A Contains a pointer to

the first byte of the

MHAL message. This

is the low byte of the

LD in the header. I.e.

Mhal_Length macro

and MhalMsgIndex

macro would use this

field to extract the

message length or

determine the byte

index to be parsed

MsgnbP MhalByte* N/A The message next byte

pointer of data in the

payload to extract.

This field is advanced

whenever the

Mhal_getn macros

are invoked. This is

used is testing for

message completion.

A.5.3.1.3 Return Value

Not applicable

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 22

A.5.3.2 accessMhalMsg Macro

This macro reads the header of an MHAL and initializes the extraction process for an MHAL message.

This macro can set up a processing block within the function using it. It must be terminated with the

endAccessMhalMsg macro. The messagePointer argument will point to the MHAL message

from which the user wishes to extract the data

A.5.3.2.1 Synopsis

#define accessMhalMsg(messagePointer)

A.5.3.2.2 Arguments

Parameter Name Description

messagePointer Address to a region of memory where the MHAL message resides

A.5.3.2.3 Return Value

None

A.5.3.3 Mhal_get8, Mhal_get16 & Mhal_get32 Macros

This macro reads the next n-bytes from the message and stores the value into the LSB n-bits defined by

the destination. After any Mhal_getn macro call the next available byte position in the message is set

to the first byte after the data just read.

Mhal_get8 - 1 byte read, least significant 8 bits written

Mhal_get16 - 2 bytes read, least significant 16 bits written

Mhal_get32 - 4 bytes read, 32 bits written

A.5.3.3.1 Synopsis

#define Mhal_get8(destination)

#define Mhal_get16(destination)

#define Mhal_get32(destination)

A.5.3.3.2 Arguments

Parameter Name Description

Destination Name of a location in memory where the parsed data is to be stored. Destination

is only referenced once so that auto-increment of a pointer reference can be

used.

A.5.3.3.3 Return Value

None

A.5.3.4 Mhal_Length Macro

This macro provides the length in bytes of the current MHAL message being processed.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 23

A.5.3.4.1 Synopsis

#define Mhal_Length

A.5.3.4.2 Arguments

None

A.5.3.4.3 Return Value

Length in bytes of the message. This includes the MHAL header size.

A.5.3.5 MhalMsgIndex Macro

This macro provides the byte index of the next byte to be read in the current MHAL message being

processed.

A.5.3.5.1 Synopsis

#define MhalMsgIndex

A.5.3.5.2 Arguments

None

A.5.3.5.3 Return Value

Byte index within the message.

A.5.3.6 Mhal_EOM Macro

This macro checks to determine if the next read position is at or past the end of the MHAL message

being processed.

A.5.3.6.1 Synopsis

#define Mhal_EOM

A.5.3.6.2 Arguments

None

A.5.3.6.3 Return Value

Boolean TRUE if at the "End Of Message".

A.5.3.7 MhalMsgField Macro

This macro provides access the structure representing the MHAL message being processed when the

accessMhalMsg() macro was encountered. This may be used to acquire the input argument to pass

the MHAL message to a field parsing function inline or to another function within the source file

processing the MHAL message.

A.5.3.7.1 Synopsis

#define MhalMsgField &MhalpS

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 24

A.5.3.7.2 Arguments

None

A.5.3.7.3 Return Value

Structure representing the MHAL message being processed when the accessMhalMsg() macro was

encountered

A.5.3.8 endAccessMhalMsg Macro

This macro terminates the processing block of an MHAL message which was initiated with a call to

AccessMhalMsg().

A.5.3.8.1 Synopsis

#define endAccessMhalMsg

A.5.3.8.2 Arguments

None

A.5.3.8.3 Return Value

None

A.5.3.9 accessMhalField Macro

This macro is paired with the endAccessMhalField macro as a block structure to allow parsing the

data within the two macro calls. This macro allows the developer to use the Mhal_getn macros in

nested parsing functions that are only knowledgeable about the field or data structure they parse.

A.5.3.9.1 Synopsis

#define accessMhalField(parseMsgStruct)

A.5.3.9.2 Arguments

Parameter Name Description

parseMsgStruct Pointer to the MhalParseStruct macro that was created by the call to

accessMhalMsg macro.

A.5.3.9.3 Return Value

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 25

A.5.3.10 endAccessMhalField Macro

This macro is paired with the accessMhalField macro. This macro terminates the block structure.

As a result of encountering this macro, the current read position in the MhalParseStruct passed into

the accessMhalField macro is updated. Thus, any additional parsing of the message by other

functions will commence on the next byte after accessed MHAL field.

A.5.3.10.1 Synopsis

#define endAccessMhalField

A.5.3.10.2 Arguments

None

A.5.3.10.3 Return Value

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 26

APPENDIX A.A – ABBREVIATIONS AND ACRONYMS

Acronym Definition

ADDR Address

AGC Automatic Gain Control

ALC Automatic Level Control

API Application Program Interface

CE Computational Element

CF Core Framework

CLK Clock

CORBA Common Object Request Broker Architecture

DOD Department of Defense

DSP Digital Signal Processor

EN Enable

EOM End Of Message

FIFO First In First Out

FPGA Field Programmable Gate Array

FREQ Frequency

GPP General Purpose Processor

HDL Hardware Description Language

HW Hardware

ID Identifier

IDL Interface Definition Language

IU In Use

JPEO Joint Program Executive Office

JTNC Joint Tactical Networking Center

JTR Joint Tactical Radio

JTRS Joint Tactical Radio System

LD Logical Destination

LSB Least Significant Byte

MHAL Modem Hardware Abstraction Layer

MSB Most Significant Byte

PF Platform

RAM Random Access Memory

REG Regular

RF Radio Frequency

RFC RF Chain

rsp Response

RX Receive

SCA Software Communications Architecture

STRB Strobe

SW Software

TX Transmit

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

WF Waveform

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 27

APPENDIX A.B – PERFORMANCE SPECIFICATION
Not applicable

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 28

B. MHAL GPP API EXTENSION

B.1 INTRODUCTION
The MHAL Device supports methods and attributes that are specific to the General Purpose Processor

(GPP) Modem Hardware (HW) device it represents. For the purposes of this API the following applies

to processor naming conventions:

 A GPP represents a CORBA capable processor (This could be a DSP that supports CORBA.)

SCA devices do not have a single interface, but should instead be considered a composition of objects

and interfaces. As an example, each “provides” port on a device represents a CORBA servant. As a

consequence, a device cannot be generally defined with a single IDL file. This API documents a GPP

Modem HW component rather than a single interface.

This API provides information to the software developer to utilize the MHAL Device interfaces in the

Waveform target configurations.

The General Purpose Processor (GPP) portion of the MHAL defines a SCA provides port,

MHALPacketConsumer interface, as the mechanism by which data is moved between waveform

applications and the MHAL Device. MHAL Device defines a SCA provides port that provides the

MHALPacketConsumer interface and MHAL Device defines a SCA uses port that uses the same

interface. It is assumed that each waveform component that interfaces with MHAL Device with the

intention of sending data through MHAL Device will implement a uses port and that each waveform

component that interfaces with MHAL Device with the intention of receiving data from MHAL Device

will implement a provides port.

B.1.1 Overview

This document contains as follows:

a. Section B.1, Introduction, of this document contains the introductory material regarding the

overview, and Service Layer description.

b. Section B.2, Services, provides summary of service interface uses, interface for each device

component, port connections, and sequence diagrams.

c. Section B.3, Service Primitives and Attributes, specifies the operations that are provided by the

MHAL Device.

d. Section B.4, IDL

e. Section B.5, Data Types and Exceptions.

f. Appendix B.A – Abbreviations and Acronyms

g. Appendix B.B – Performance Specification

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 29

B.1.2 Service Layer Description

B.1.2.1 MHAL Port Connections

Figure 3 shows the port connections for the MHAL.

Note: All port names are for reference only.

MHALDevice User

Example::Interface

example_port

SCA "uses" port
SCA "provides" port

CORBA interface class provided

port name
non-port interface

Key:
mhal_consumer_in_port

MHAL::MHALPacketConsumer

MHAL::MHALPacketConsumer

mhal_producer_out_port

Figure 3 – MHAL Port Diagram

MHAL Provides Ports Definitions

mhal_consumer_in_port is provided by the MHAL to consume packet data through operations

such as pushPacket, get packet size information and addTxRoute.

MHAL Uses Ports Definitions

mhal_producer_out_port is used by the MHAL to push packet data through operations such as

pushPacket, get packet size information and getRxRoutes.

B.1.2.2 Modes of Service

Not applicable

B.1.2.3 Service States

B.1.2.4 MHAL State Diagram

The MHAL states are illustrated in Figure 4. The MHAL states ensure that received operations are only

executed when the MHAL is in the proper state. The five states of the MHAL are as follow:

 CONSTRUCTED - The state transitioned to upon successful creation.

 INITIALIZED - The state transitioned to upon successful initialization.

 ENABLED - The state transitioned to upon successful start.

 DISABLED - The state transitioned to upon successful stop.

 RELEASED - The state transitioned to upon successful release.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 30

The MHAL transitions between states in response to the initialize, start, stop and releaseObject

operations.

ENABLED
DISABLEDstart

stop

INITIALIZED

CONSTRUCTED

RELEASED

start stop

releaseObject

releaseObject

releaseObject

stop

releaseObject

start

initialize

Figure 4 – MHAL State Diagram

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 31

B.2 SERVICES
The MHAL CORBA-compliant API separates platform interfaces from waveform interfaces. MHAL::PF_MHALPacketConsumer specifies the

interfaces accessed by the JTR set, and the MHAL::WF_MHALPacketConsumer specifies the interface accessed by a waveform or application.

B.2.1 Provide Services
The MHAL Provide Service consists of the following service ports in Table 2, interfaces, and primitives, which can be called by other client

components. Detail definition of the interfaces and services shaded in grey is provided by the Packet API (see reference [2]).

Table 2 – MHAL Device Provide Service Interface

Service Group

(Port Name)
Service (Interface Provided) Primitives (Provided)

Parameter Name or

Return Value
Valid Range

mhal_consumer_in

_port

MHAL::MHAL

PacketConsumer

 pushPacket() See section B.3

Service Primitives

and Attributes

See section B.3

Service Primitives

and Attributes

MHAL::PF_MHAL

PacketConsumer

addTxRoute() See section B.3

Service Primitives

and Attributes

See section B.3

Service Primitives

and Attributes

Packet::

PayloadStatus

(see reference [2])

getMaxPayloadSize() Return Value N/A

getMinPayloadSize() Return Value N/A

getDesiredPayloadSize()* Return Value 0

getMinOverrideTimeout()* Return Value 0

* Operation usage not required.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 32

B.2.2 Use Services
The MHAL Use Service set consists of the following service ports in Table 3, interfaces, and primitives. Since the MHAL acts as a client with

respect to these services from other components, it is required to connect these ports with corresponding service ports applied by the server

component. The MHAL uses the Port Name as connectionId for the connection.

Table 3 – MHAL Use Service Interface

Service Group

(Port Name)
Service (Interface Provided) Primitives (Provided)

Parameter Name or

Return Value
Valid Range

mhal_producer_

out_port

MHAL::MHALP

acketConsumer

 pushPacket() See section B.3

Service Primitives

and Attributes

See section B.3

Service Primitives

and Attributes

MHAL::WF_MHAL

PacketConsumer

getRxRoutes() See section B.3

Service Primitives

and Attributes

See section B.3

Service Primitives

and Attributes

Packet::

PayloadStatus (see

reference [2])

getMaxPayloadSize() Return Value N/A

getMinPayloadSize() Return Value N/A

getDesiredPayloadSize()* Return Value 0

getMinOverrideTimeout()* Return Value 0

* Operation usage not required.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 33

B.2.3 Interface Modules

B.2.3.1 MHAL

Figure 5 – MHAL Interface Class Diagram

B.2.3.1.1 MHALPacketConsumer Interface Description

The interface design of the MHALPacketConsumer is shown in Figure 5. It extends the

Packet::PayloadStatus interface to provide the ability to receive a data packet to and from a service

user/provider (See Packet API [2]).

B.2.3.1.2 PF_MHALPacketConsumer Interface Description

The interface design of the PF_MHALPacketConsumer is shown in Figure 5. It extends the

MHALPacketConsumer interface to provide the ability for the waveform to add a mapping between a

logical destination and a physical destination for the service user.

B.2.3.1.3 WF_MHALPacketConsumer Interface Description

The interface design of the WF_MHALPacketConsumer is shown in Figure 5. It extends the

MHALPacketConsumer interface to provide the ability for the MHAL to retrieve the logical destinations

contained within a waveform component.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 34

B.3 SERVICE PRIMITIVES AND ATTRIBUTES
To enhance the readability of this API document and to avoid duplication of data, the type definitions of

all structured types (i.e., structures, typedefs, exceptions, enumerations and unions) used by the Service

Primitives and Attributes have been co-located in section B.5 Data Types and Exceptions. This cross-

reference of types also includes any nested structures in the event of a structure of structures or an array

of structures.

B.3.1 MHAL::MHALPacketConsumer

B.3.1.1 pushPacket Operation

The pushPacket operation provides the ability to push data packets to the packet consumer.

B.3.1.1.1 Synopsis

void pushPacket (in unsigned short logicalDest, in JTRS::OctetSequence payload);

B.3.1.1.2 Parameters

Parameter

Name

Description Type Units Valid

Range

logicalDest The logical destination for the

message

unsigned short Logical

Destination

ID

0 – 32767

payload The real-time data (includes

logical destination & message

length)

JTRS::OctetSequence

(see reference [1])

N/A N/A

B.3.1.1.3 State

ENABLED CF::Device::operationalState.

B.3.1.1.4 New State

This operation does not cause a state change.

B.3.1.1.5 Return Value

None

B.3.1.1.6 Originator

Service Provider

B.3.1.1.7 Exceptions

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 35

B.3.2 MHAL::PF_MHALPacketConsumer

B.3.2.1 addTxRoute Operation

The addTxRoute operation saves the passed in parameters as a mapping between a logical destination and

a physical destination. This information is used in future pushPacket calls for routing the received

message. For the MHAL GPP, the mapping between logical and physical destinations is done at run-

time. A WF must call this operation for each logical destination.

Note: In the MHAL DSP, the mapping between logical and physical destinations may be achieved with a

header file at build time.

B.3.2.1.1 Synopsis

void addTxRoute (in unsigned short logicalDest,

in MHAL::MHALPhysicalDestination physicalDest);

B.3.2.1.2 Parameters

Parameter

Name

Description Type Units Valid Range

logicalDest The logical

destination

for the

message

unsigned short N/A 0 – 32767

physicalDest Physical

destination

MHAL::MHALPhysicalDesti

nation

unsigned

short

See B.5.1.1

B.3.2.1.3 State

ENABLED CF::Device::operationalState.

B.3.2.1.4 New State

This operation does not cause a state change.

B.3.2.1.5 Return Value

None

B.3.2.1.6 Originator

Service Provider.

B.3.2.1.7 Exceptions

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 36

B.3.3 MHAL::WF_MHALPacketConsumer

B.3.3.1 getRxRoutes Operation

The getRxRoutes operation is intended for waveform developers who implement the MHAL Interface.

This method will be called from the MHAL in order to retrieve the logical destinations contained within

a waveform component. This routing information is used by MHAL when it receives a message and

must route it to a component within the GPP.

B.3.3.1.1 Synopsis

MHAL::WF_MHALPacketConsumer::RxRouteSequence getRxRoutes ();

B.3.3.1.2 Parameters

None

B.3.3.1.3 State

ENABLED CF::Device::operationalState.

B.3.3.1.4 New State

This operation does not cause a state change.

B.3.3.1.5 Return Value

Description Type Units Valid Range

Returns a valid sequence containing

each logical destination ID for which

the waveform requests messages.

A sequence of zero (0) length

indicates that the waveform

application has not completed

configuring these logical destinations

and not all logical destinations are

known.

A sequence of one (1) length and a

single value of 0 (special NULL

logical destination ID) indicates that

the waveform application does not

wish to receive messages from

MHAL.

MHAL::

WF_MHALPacketConsumer::

RxRouteSequence

Logical

Destination

ID

N/A

B.3.3.1.6 Originator

Service Provider.

B.3.3.1.7 Exceptions

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 37

B.4 IDL

B.4.1 MhalDevice IDL
/*

** MhalDevice.idl

*/

#ifndef __MHALDEVICE_DEFINED

#define __MHALDEVICE_DEFINED

#ifndef __JTRSCORBATYPES_DEFINED

#include "JtrsCorbaTypes.idl"

#endif

#ifndef __PACKET_DEFINED

#include "Packet.idl"

#endif

module MHAL {

 interface MHALPacketConsumer : Packet::PayloadStatus {

 void pushPacket (

 in unsigned short logicalDest,

 in JTRS::OctetSequence payload

);

 };

 // Known MHAL Physical Destination Types

 typedef JTRS::ExtEnum MHALPhysicalDestination;

 const MHALPhysicalDestination MHALPhysicalDestination_NONE = 0;

 const MHALPhysicalDestination PHYSICAL_DESTINATION_DSP = MHALPhysicalDestination_NONE+1;

 const MHALPhysicalDestination PHYSICAL_DESTINATION_FPGA = PHYSICAL_DESTINATION_DSP +1;

 const MHALPhysicalDestination PHYSICAL_DESTINATION_GPP = PHYSICAL_DESTINATION_FPGA +1;

 interface PF_MHALPacketConsumer : MHALPacketConsumer {

 // Following type and consts are deprecated - Use versions scoped to MHAL module!

 typedef MHAL::MHALPhysicalDestination MHALPhysicalDestination;

 const MHALPhysicalDestination MHALPhysicalDestination_NONE = MHAL::MHALPhysicalDestination_NONE;

 const MHALPhysicalDestination PHYSICAL_DESTINATION_DSP = MHAL::PHYSICAL_DESTINATION_DSP;

 const MHALPhysicalDestination PHYSICAL_DESTINATION_FPGA = MHAL::PHYSICAL_DESTINATION_FPGA;

 const MHALPhysicalDestination PHYSICAL_DESTINATION_GPP = MHAL::PHYSICAL_DESTINATION_GPP;

 void addTxRoute (

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 38

 in unsigned short logicalDest,

 in MHAL::MHALPhysicalDestination physicalDest

);

 };

 interface WF_MHALPacketConsumer : MHALPacketConsumer {

 typedef sequence<unsigned short> RxRouteSequence;

 MHAL::WF_MHALPacketConsumer::RxRouteSequence getRxRoutes ();

 };

};

#endif

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 39

B.5 DATA TYPES AND EXCEPTIONS
This section contains the Device component UML diagram and the definitions of all data types

referenced (directly or indirectly) by section B.3 Service Primitives and Attributes.

Packet

MHALDevice

MHALPacket

Consumer

PF_MHAL

PacketConsumer
WF_MHAL

PacketConsumer

Figure 6 – MHAL Component Diagram

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 40

B.5.1 MHAL Types

B.5.1.1 MHAL::MHALPhysicalDestination Type

The MHALPhysicalDestination type is used to set the physical destination.

Typedef Implementation Type

MHALPhysicalDestination unsigned short

The following table defines the valid set of values for the above type:

Type Valid Range Description

MHALPhysicalDestination PHYSICAL_DESTINATION_DSP DSP physical destination

PHYSICAL_DESTINATION_FPGA FPGA physical destination

PHYSICAL_DESTINATION_GPP GPP physical destination

B.5.2 MHAL::PF_MHALPacketConsumer Types

B.5.2.1 MHAL::PF_MHALPacketConsumer::MHALPhysicalDestination

Type <Deprecated>

The MHALPhysicalDestination type is used to set the physical destination.

Typedef Implementation Type

MHALPhysicalDestination unsigned short

The following table defines the valid set of values for the above type:

Type Valid Range Description

MHALPhysicalDestination PHYSICAL_DESTINATION_DSP DSP physical destination

PHYSICAL_DESTINATION_FPGA FPGA physical destination

PHYSICAL_DESTINATION_GPP GPP physical destination

B.5.3 MHAL::WF_MHALPacketConsumer Types

B.5.3.1 MHAL::WF_MHALPacketConsumer::RxRouteSequence Type

The RxRouteSequence defines an unsigned short CORBA sequence of logical destination IDs.

Typedef Implementation Type

RxRouteSequence sequence<unsigned short>

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 41

APPENDIX B.A – ABBREVIATIONS AND ACRONYMS
See section Appendix A.A.

APPENDIX B.B – PERFORMANCE SPECIFICATION
Table 4 provides a template for the generic performance specification for the MHAL GPP API Extension

that will be documented in the waveform or user using the interface. This performance specification

corresponds to the port diagram in Figure 3.

Table 4 – MHAL Performance Specification

Specification Description Units Value

Worst Case Command Execution Time

for mhal_consumer_in_port

* * *

Worst Case Command Execution Time

for mhal_producer_out_port

* * *

Note: (*) These values should be filled in by individual developers.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 42

C. MHAL DSP API EXTENSION

C.1 INTRODUCTION
The MHAL DSP API consists of a collection of C function specifications that provide services to route

MHAL communications, and MHAL message status. For the purposes of this API the following applies

to processor naming conventions:

 A DSP represents a C capable processor, but does not provide CORBA capability.

The service user includes the C function specifications in the service users DSP code. Calls to the MHAL

DSP functions are made from the service users DSP source code. It is important to structure aspects of

the MHAL DSP and service user modularity and header file structure in order to facilitate an orderly

build process and to minimize the effort involved in integrating a service user with a host-specific MHAL

DSP.

C.1.1 Overview

This document contains as follows:

a. Section C.1, Introduction, of this document contains the introductory material regarding the

Overview.

b. Section C.2, Services, provides summary of service uses.

c. Section C.3, Service Primitives and Attributes specifies the functions that are provided by the

MHAL DSP.

d. Section C.4, Interface Definitions

e. Section C.5, Data Types and Exceptions specifies the data types that are provided by the MHAL

DSP.

f. Appendix C.A – Abbreviations and Acronyms

g. Appendix C.B – Performance Specification

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 43

C.2 SERVICES

C.2.1 MHAL Communication Routing Module
This feature provides additional capabilities to manage the MHAL DSP Data Sink. Support of this

feature is through the functions defined in the following sections:

 C.3.1.1 Mhal_Comm Function

 C.3.1.2 reroute_LD_sink Function

 C.3.1.3 LD_of Function

C.2.2 MHAL Message In-Use Module (optional)
This feature allows the waveform to be able to detect a message buffer that is still In-Use by a Data Sink.

Support of this feature is through the functions defined in the following sections:

 C.3.2.1 setMsgInUse Function

 C.3.2.2 clrMsgInUse Function

 C.3.2.3 isMsgInUse Function

These functions utilize the IU bit of the MHAL Message (A.2.1.3.1.1 MHAL Message IU Bit).

Communication devices use these message in-use functions to indicate that the message is in use until

successfully transmitted over the communication device.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 44

C.3 SERVICE PRIMITIVES AND ATTRIBUTES
To enhance the readability of this API document and to avoid duplication of data, the type definitions of

all structured types (i.e., structures and typedefs) used by the module messages have been co-located in

section C.4.

C.3.1 MHAL Communication Routing

C.3.1.1 Mhal_Comm Function

This function acts as a router. In the DSP, messages are launched by calling Mhal_Comm function with

the Message Pointer parameter (bufferPtr) pointing to the Logical Destination of the message to be

sent. This function is equivalent to a one way pushPacket() call in CORBA on the MHAL GPP.

C.3.1.1.1 Synopsis

void Mhal_Comm (MhalByte* bufferPtr);

C.3.1.1.2 Arguments

Argument

Name

Description Type Units Valid

Range

bufferPtr A byte pointer to a message that

needs to be sent.

MhalByte* N/A N/A

C.3.1.1.3 Return Value

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 45

C.3.1.2 reroute_LD_sink Function

This function allows a waveform to reroute the Data Sink Function for a given LD to a different LD

during waveform operation.

C.3.1.2.1 Synopsis

funPtr reroute_LD_sink (short LD, funPtr newSinkFx);

C.3.1.2.2 Arguments

Argument

Name

Description Type

LD Logical destination that is being

rerouted to new Data Sink

function

short

newSinkFx The new Data Sink Function (fx)

that is called when a message is

sent to the LD

funPtr

C.3.1.2.3 Return Value

Description Type

Previous Data Sink Function used for the LD. This

can be used to restore the sink process normally

associated with the sink.

funPtr

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 46

C.3.1.3 LD_of Function

Function to return the extracted LD from the message. The returned LD is only the 15 bit LD value.

C.3.1.3.1 Synopsis

short LD_of (MhalByte* msgPtr);

C.3.1.3.2 Arguments

Argument

Name

Description Type Units Valid

Range

msgPtr A pointer to an MHAL Message. MhalByte* N/A N/A

C.3.1.3.3 Return Value

A 16-bit value containing the LD from the MHAL message.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 47

C.3.2 MHAL Message In-Use (optional)

C.3.2.1 setMsgInUse Function

This function marks the message as “in use” because the targeted Data Sink is busy.

A setMsgInUse call must be paired with a clrMsgInUse call before a sequential setMsgInUse call is

made.

C.3.2.1.1 Synopsis

void setMsgInUse (MhalByte* msgPtr);

C.3.2.1.2 Arguments

Argument

Name

Description Type Units Valid

Range

msgPtr A pointer to an MHAL message. MhalByte* N/A N/A

C.3.2.1.3 Return Value

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 48

C.3.2.2 clrMsgInUse Function

This function indicates that a message has been processed sufficiently and that the storage space related

to the message can be reused. This function marks the message as not “In-Use”.

C.3.2.2.1 Synopsis

void clrMsgInUse (MhalByte* msgPtr);

C.3.2.2.2 Arguments

Argument

Name

Description Type Units Valid

Range

msgPtr A pointer to an MHAL message. MhalByte* N/A N/A

C.3.2.2.3 Return Value

None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 49

C.3.2.3 isMsgInUse Function

This function examines the message and determines if the setMsgInUse() function has been called

against the message and no matching clrInUseMsg() call has been made.

C.3.2.3.1 Synopsis

bool isMsgInUse(MhalByte* msgPtr);

C.3.2.3.2 Arguments

Argument

Name

Description Type Units Valid

Range

msgPtr A pointer to an MHAL message. MhalByte* N/A N/A

C.3.2.3.3 Return Value

A boolean signifying whether the IU bit (i.e. busy bit) is set or cleared. TRUE when a Data Sink Function

has claimed the message as still needing processing (i.e. the setMsgInUse() function has been called

and no corresponding clrMsgInUse() has been called). FALSE when the message is no longer being

claimed by a Data Sink Function.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 50

C.4 INTERFACE DEFINITIONS
None

C.5 DATA TYPES AND EXCEPTIONS

C.5.1 MHAL Communication Routing Types

C.5.1.1 funPtr Type

This type defines a function pointer prototype for a Data Sink Function that executes on the DSP.

C.5.1.1.1 Synopsis

typedef void(*funPtr)(MhalByte* msgPtr);

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 51

APPENDIX C.A – ABBREVIATIONS AND ACRONYMS
See section Appendix A.A.

APPENDIX C.B – PERFORMANCE SPECIFICATION
Not applicable

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 52

D. MHAL FPGA API EXTENSION

D.1 INTRODUCTION
The MHAL FPGA API consists of a collection of transmit and receive node user signal and timing

descriptions that provide services to route MHAL communications. For the purposes of this API the

following applies to processor naming conventions:

 An FPGA represents a HDL capable processor, again without CORBA capability.

At build time, the MHAL FPGA interface VHDL is compiled together with the waveform HDL to form a

single loadable FPGA image for the target platform. A VHDL entity description defines each MHAL

interface component available to the waveform FPGA developer.

D.1.1 Overview

This document contains as follows:

a. Section D.1, Introduction, of this document contains the introductory material regarding the

Overview, and Service Layer description.

b. Section D.2, Services

c. Section D.3, Service Primitives and Attributes

d. Section D.4, Entity Definitions

e. Section D.5, Data Types and Exceptions

f. Appendix D.A – Abbreviations and Acronyms

g. Appendix D.A – Abbreviations and Acronyms

D.1.2 Service Layer Description

D.1.2.1 MHAL FPGA Signals

D.1.2.1.1 Transmit Node

Transmit nodes are used to send data from an I/O device to any other device in the system. Two different

transmit nodes are available to the user.

D.1.2.1.1.1 Multi-Depth FIFO Tx Node

The MHAL Multi-Depth FIFO Transmit Communication Device has the following characteristics:

 Allows for multiple messages to be queued up to transmit.

 User must create the entire message (No Auto-Header Implemented).

 Any User Clock can be used.

 Allows for byte granularity of the message.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 53

Figure 7 describes a Multi-Depth FIFO Transmit Communication Device that can be instantiated to allow

communication from the waveform section to the outside software and hardware components.

WRITE_EN

WRITE_EOM _MSB

WRITE_EOM_LSB

USER INTERFACE

WRITE_DATA Multi-Depth

Transmit NodeUSER_CLK

FULL_FLAG**

ALMOST_FULL_FLAG**

** Optional: Used for debug and integration

and must be removed before delivery

Figure 7 – Multi-Depth FIFO Transmit Communication Device

In Figure 7, the User Interface signals behave as:

WRITE_EN Write enable for the data contained in WRITE_DATA

WRITE_EOM_MSB “1” indicates “end of message” in the high byte of the data

WRITE_EOM_LSB “1” indicated “end of message” in the low byte of the data

WRITE_DATA 16-bit wide data bus

USER_CLK Data is strobed into the TX Node on rising edge of the USER_CLK

 when WRITE_EN is a “1”

FULL_FLAG Indicates Full FIFO (optional)

ALMOST_FULL_FLAG Indicates Almost Full FIFO, i.e. room for at least 1 more word

 (optional)

The Multi-Depth Transmit FIFO supports buffering of one or more MHAL messages. The Data Sink

Function must be accessible to the transmit chain where this interface is deployed. That is the Data Sink

Function can be within the current FPGA or external to the FPGA via a transport device. The interface

requires that the entire MHAL message, MHAL header and payload, be provided. Thus, when the Multi-

Depth FIFO Transmit node is used, messages can be queued up to different Data Sink Functions and

delayed by the number of messages ahead of a message in the queue. The device interface associated

with the transport between two CEs can result in a clock rate that is different than the user provided

clock. The implementation of the Multi-Depth Transmit queue must size the FIFO large enough to hold

the expected traffic and includes delays caused by all other transmit nodes connected to the same

transport chain.

D.1.2.1.2 Receive Nodes

The figures 8-12, describe an MHAL Receive Communication Device that can be instantiated to allow

communication from the waveform section to the outside software and hardware components.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 54

D.1.2.1.2.1 Multi-Depth FIFO Rx Node

The MHAL Multi-Depth FIFO Receive Communication Device has the following characteristics:

 Allows multiple messages to be queued up for use by the user.

 Any User Clock can be used.

 Only receive node that allows for byte granularity of the message.

 LD associated with node defined as parameter to instantiation of the node in VHDL.

USER INTERFACE

READ_EN

READ_EOM_MSB

READ_EOM_LSB

USER_CLK

READ_DATA

READ_FLAG

Multi-Depth

Receive Node

Figure 8 – Multi-Depth FIFO Receive Communication Device

In Figure 8, the User Interface signals behave as:

READ_EN Read enable for the data contained in READ_DATA

USER_CLK Clock supplied by user that sets output rate. Rising edge of the USER_CLK

when WRITE_EN is where data changes

READ_FLAG “1” indicates packet received and ready to process by user

READ_EOM_MSB “1” indicates “end of message” in the high byte of the data

READ_EOM_LSB “1” indicated “end of message” in the low byte of the data

READ_DATA 16 bit wide data bus

D.1.2.1.2.2 Single-Depth FIFO Rx Node

The MHAL Single-Depth FIFO Receive Communication Device has the following characteristics:

 User Data received from node and placed into a FIFO of user-defined width and depth (Note:

The width must be a multiple of 16 bits).

 User must read all data before USER_DATA_NEW is signaled.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 55

PACKET _ SIZE

EMPTY _ FLAG**

USER INTERFACE

USER_ DATA

FULL_ FLAG**

Single-Depth-

Receive Node

USER_ NEXT

USER_ DATA_ NEW

USER_ CLK

** Optional: Used for debug and integration

and must be removed before delivery

Figure 9 – Single-Depth FIFO Receive Communication Device

In Figure 9, the User Interface signals behave as:

USER_CLK Clock supplied by the User that sets the output rate.

USER_DATA_NEW New User Data Available

USER_NEXT Acknowledge USER_DATA has been read, advance to next data word

USER_DATA User-specified-width data bus

PACKET_SIZE Indicates Message Size

EMPTY_FLAG Indicates Empty FIFO (optional)

FULL_FLAG Indicates Full FIFO (optional)

D.1.2.1.2.3 RAM Rx Node

The MHAL RAM Receive Communication Device has the following characteristics:

 User Data received from node and placed in a user-defined width by user-defined length RAM

(Note: The width must be a multiple of 16 bits.)

 Useful for interleavers.

 LD associated with node defined as parameter to instantiation of the node in VHDL.

USER_DATA_NEW

PACKET_SIZE

USER_CLK

USER_DATA

USER_ADDR RAM Receive

Node

USER INTERFACE

Figure 10 – RAM Receive Communication Device

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 56

In Figure 10, the User Interface signals behave as:

USER_DATA_NEW New User Data Available

USER_CLK Clock supplied by the User that sets the output rate.

USER_ADDR RAM Address Signal

PACKET_SIZE Indicates Message Size

USER_DATA User-specified-width data bus

D.1.2.1.2.4 N-Word Rx Register

The MHAL N-Word Register Receive Communication Device has the following characteristics:

 User Data received from node and placed in a register of user-defined width (Note: The width

must be a multiple of 16 bits.

 Useful configuration and status.

 LD associated with node defined as parameter to instantiation of the node in VHDL.

USER_DATA_ NEW**

USER_CLK

USER INTERFACE

USER_DATA

N-Word Register

Receive Node

** Optional: Data can be applied to

the USERS circuit directly and

USER_DATA_NEW can be ignored

Figure 11 – N-Word Register Receive Communication Device

In Figure 11, the User Interface signals behave as:

USER_DATA_NEW New user data available, can be used to allow the USER to decide when the

data should be applied (optional)

USER_CLK Clock supplied by the User that sets the output rate

USER_DATA User-specified-width data bus

D.1.2.1.2.5 Strobe Rx Node

The MHAL Strobe Receive Communication Device has the following characteristics:

 Mhal_Comm() message with no payload, typically used as an event.

 LD associated with node defined as parameter to instantiation of the node in VHDL.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 57

USER_DATA_NEW

USER_CLK

USER INTERFACE

Strobe Receive

Node

Figure 12 – Strobe Receive Communication Device

In Figure 12, the User Interface signals behave as:

USER_DATA_NEW Receive Node was hit with a message

USER_CLK Clock supplied by the User that sets the output rate

D.1.2.2 MHAL FPGA Timing

D.1.2.2.1 Transmit Node

D.1.2.2.1.1 Multi-Depth FIFO Tx Node

Figure 13 shows a generalized timing diagram for the Multi-Depth FIFO Transmit Node.

The original message to the DSP is formatted as follows:

 LD SIZE PAYLOAD

 0222 000C 26,C1, E8,14, D7,B9, CF,38

For this node the depth is set to 1024 and the data is 16 bit. This node is limited to a message queue of 32

messages. The total size of any one message or multiple messages is not allowed to exceed 1024 words.

This node requires that the LD and SIZE of each message be written as the first 4 bytes of the

PAYLOAD.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 58

user_clk

write_en

write_eom_msb

write_eom_lsb

write_data C126 14E8 B9D7 38CF

Figure 13 – Reference Timing Diagram for Multi-Depth FIFO Transmit Node

For Figure 13, the timing description is as follows:

1. The WRITE_EN signal shall enable the FIFO to write the contents of the WRITE_DATA bus to

the next FIFO address. If WRITE_EN is high on the rising edge of the WRITE_CLK, the data

bus will be copied to the FIFO. The WRITE_EN signal goes high as the first data word of the

message is clocked onto the bus. WRITE_EN stays high for the duration of the message,

returning low when the first null word (word not belonging to this or any other message) is

clocked on the data bus.

2. WRITE_EOM_MSB and WRITE_EOM_LSB are used to indicate the position of the last

message byte. When the message contains an odd number of bytes, the WRITE_EOM_LSB is

set. When the message contains an even number of bytes, the WRITE_EOM_MSB is set.

D.1.2.2.2 Receive Nodes

D.1.2.2.2.1 Multi-Depth FIFO Rx Node

Figure 14 shows a generalized timing diagram for the Multi-Depth FIFO Receive Node.

The original message from the DSP is formatted as follows:

 LD SIZE PAYLOAD

 0214 000C 3D,A0, 26,C1, E8,14, D7,B9

The total PAYLOAD of all messages written to this node cannot exceed the total depth of the NODE.

For example: If the node is instantiated with a depth of 1024 (i.e. number of words), then can write 1

1024 WORD message or 2 512 WORD messages or some other unequal combination of WORD message

sizes as long as the total is not more than 1024.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 59

user_clk

read_flag

read_en

read_eom_msb

read_eom_lsb

read_data

A03D C126 14E8 B9D7

Figure 14 – Reference Timing Diagram for Multi-Depth FIFO Receive Node

For Figure 14, the timing description is as follows:

1. READ_FLAG indicates a complete message has been written to the FIFO and is ready to be read.

2. READ_EN will read the contents of the next FIFO address and place it on the READ_DATA

bus. A new message word will be available on the FIFO data bus upon each rising USER_CLK

edge while READ_EN is high. The first word is available before READ_EN is asserted and will

be so until the first rising USER_CLK edge while READ_EN is high.

3. READ_EOM_MSB and READ_EOM_LSB are used to indicate the position of the last message

byte. When the message contains an odd number of bytes, the READ_EOM_LSB is set. When

the message contains an even number of bytes, the READ_EOM_MSB is set.

D.1.2.2.2.2 Single-Depth FIFO Rx Node

Figure 15 shows a generalized timing diagram for the 512x16 FIFO implemented with the MHAL

Single-Depth FIFO Receive Node.

The original message from the DSP is formatted as follows:

 LD SIZE PAYLOAD

 0211 000A 3D,A0, 26,C1, D7,B9

The PAYLOAD is shown in the BYTE order that the data is written. For this example, up to 512 16 bit

words can be written to the FIFO at one time. The output data of this FIFO is not registered. This FIFO

has been implemented in the Show-ahead synchronous FIFO mode. The data becomes available before

the ‘rdreq’ (USER_NEXT) is asserted.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 60

user_clk

user_data_new

user_next

user_data

packet_size

full_flag

empty_flag

A03D C126 B9D7

Figure 15 – Reference Timing Diagram for Single-Depth FIFO Receive Node

For Figure 15, the timing description is as follows:

1. USER_DATA_NEW signals the USER that USER_DATA is available. USER_DATA_NEW is

one single pulse, the width of one USER_CLK.

2. USER_NEXT acts as a read acknowledge for each word of USER_DATA for every USER_CLK

that it is high. All words must be acknowledged until the EMPTY_FLAG is set before another

MHAL message can be sent.

3. The first word of USER_DATA is available immediately. Each word of USER_DATA must be

acknowledged with USER_NEXT.

4. PACKET_SIZE is available at the start of the USER_DATA_NEW pulse, and will continue to

be available until another MHAL message overwrites the node contents.

5. EMPTY_FLAG, FULL_FLAG. Accuracy of these two flags is 1 to 3 USER_CLKs after the

data. This depends on the ratio of the MHAL_CLK and the USER_CLK. The larger the ratio the

larger the accuracy error.

D.1.2.2.2.3 RAM Rx Node

Figure 16 shows a generalized timing diagram for the 256x16 RAM Receive Node.

This is an example of a 256x16 RAM implemented with the MHAL_RX_RAM node.

The original message from the DSP is formatted as follows:

 LD SIZE PAYLOAD

 0213 0012 00,02, 00,01, 00,08, 22,02, E8,14, 26,C1, CF, 38

The PAYLOAD is shown in the BYTE order that the data is written. This is a simple RAM. For this

example, up to 256 16 bit words can be written to the RAM at one time. The first word in the PAYLOAD

is written to address 00 in the RAM. The RAM address is incremented by one as the PAYLOAD data is

written in. For this example, the RAM contents will be as shown below:

 RAM ADDR RAM DATA

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 61

01 0200

02 0100

03 0800

04 0222

05 14E8

06 C126

07 38CF

user_clk

user_data_new

user_data

user_addr

packet_size

0100 0200 14E8 0222 38CF

01 00 04 03 060xFF

Figure 16 – Reference Timing Diagram for RAM Receive Node

For Figure 16, the timing description is as follows:

1. USER_DATA_NEW signals the USER that USER_DATA is available.

USER_DATA_NEW is one single pulse, the width of one USER_CLK.

2. USER_DATA is available one USER_CLK after a valid USER_ADDR and will continue to

be available until the USER_ADDR changes or another MHAL message overwrites the node

contents. The output data in the RAM is registered on the USER_CLK.

3. PACKET_SIZE is available at the start of the USER_DATA_NEW pulse, and will continue

to be available until another MHAL message overwrites the node contents.

D.1.2.2.2.4 N-Word Rx Register

Figure 17 shows a generalized timing diagram for the N-word Receive Register (32 bit with LSB on

right hand side).

The original message from the DSP is formatted as follows:

 LD SIZE PAYLOAD

 0214 000A 22,02,01,00,02,00

The PAYLOAD is shown in the BYTE order that the data is written. Extra data is written to show that

more data than the width of the register can be written, but only the last bytes equal to the width will be

kept in the register.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 62

Therefore, in the example above the 0222 is shifted out completely which leaves 0001,0002. Data is

written in LSB BYTE to MSB BYTE order. So the first 2 bytes written in the PAYLOAD is the LSB

WORD in the register. The last 2 bytes written is the MSB WORD in the register. If more data is written

than the register can hold, then the LSB WORD is shifted out and all the other data words will shift MSB

WORD to LSB WORD to allow the additional MSB WORD to shift in.

user_clk

user_data_new**

user_data
0x00020001

** Optional: Data can be applied to

the USERS circuit directly and

USER_DATA_NEW can be ignored

Figure 17 – Reference Timing Diagram for N-word Receive Register

For

Figure 17, the timing description is as follows:

1. USER_DATA_NEW signals the USER that USER_DATA is available.

USER_DATA_NEW is one single pulse, the width of one USER_CLK.

a. For example: If the timing between when the DSP updates the register and when the

USER needs the data is not that well defined or cannot be closely defined, the USER

can use this signal as an alert that the DSP has updated the register, then when the

user is ready, the data can be grabbed at a later time. The USER should at least have

some window within which the data must be used, because if the DSP sends another

message to the register, before the USER reads it, the data will be overwritten with

new data. It is the responsibility of the USER to understand their system timing and

make adjustments for message latency to make sure data is used in a timely manner.

2. USER_DATA is available at the start of the USER_DATA_NEW pulse, and will continue to

be available until another MHAL message overwrites the node contents.

D.1.2.2.2.5 Strobe Rx Node

Figure 18 shows a generalized timing diagram for a Strobe.

The original message from the DSP is formatted as follows:

 LD SIZE PAYLOAD

 0215 0004 None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 63

user_clk

user_data_new

Figure 18 – Reference Timing Diagram for a Strobe

For Figure 18, the timing description is as follows:

1. USER_DATA_NEW is the STROBE. USER_DATA_NEW is one single pulse, the width of

one USER_CLK.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 64

D.2 SERVICES
Not applicable

D.3 SERVICE PRIMITIVES AND ATTRIBUTES
Not applicable

D.4 ENTITY DEFINITIONS

D.4.1 MHAL FPGA Transmit Node – Multi-Depth FIFO Entity

Description
--

-- MHAL FPGA Transmit Node - Multi-Depth

--

entity MHAL_TX_MULTI is

 port(

 -- JTR Set INTERFACE

 -- <***To be filled in by platform developers***>

 -- USER INTERFACE

 -- Write Interface of FIFO

 -- FIFO Write Enable

 WRITE_EN : in std_logic;

 -- Flag indicating last byte of message

 WRITE_EOM_MSB : in std_logic;

 -- Flag indicating last byte of message

 WRITE_EOM_LSB : in std_logic;

 -- Data to be written to FIFO

 WRITE_DATA : in std_logic_vector(15 downto 0)

 -- Clock for Write Interface of FIFO from User

 USER_CLK : in std_logic;

 -- Indicates full fifo *** optional ***

 FULL_FLAG :out std_logic;

 -- Indicates almost full fifo *** optional ***

 ALMOST_FULL_FLAG :out std_logic

);

end entity TX_NODE;

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 65

D.4.2 MHAL FPGA Receive Node – Multi-Depth FIFO Entity

Description
--

-- MHAL FPGA Receive Node - Multi-Depth FIFO

--

entity MHAL_RX_MULTI is

 generic(

 -- MHAL node logical destination

 G_LOGICAL_DESTINATION : natural := 0;

);

 port(

 -- JTR Set INTERFACE

 -- <***To be filled in by platform developers***>

 -- USER INTERFACE

 -- Read Interface of FIFO

 -- FIFO Read Enable (Acknowledge)

 READ_EN :in std_logic;

 -- Clock for Read Interface of FIFO from User

 USER_CLK :in std_logic;

 -- Flag indicating message is ready to be read from FIFO

 READ_FLAG :out std_logic;

 -- Flag indicating last byte of message

 READ_EOM_MSB :out std_logic;

 -- Flag indicating last byte of message

 READ_EOM_LSB :out std_logic;

 -- most recent word read from FIFO

 READ_DATA :out std_logic_vector(15 downto 0)

);

end entity RX_NODE;

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 66

D.4.3 MHAL FPGA Receive Node – Single-Depth FIFO Entity

Description
--

-- MHAL FPGA Receive Node - Single-Depth FIFO

--

entity MHAL_RX_SINGLE is

 generic(

 -- Width of MHAL data

 G_USER_WIDTH :integer := 16;

 -- MHAL node logical destination

 G_LOGICAL_DESTINATION : natural := 0

);

 port(

 -- JTR Set INTERFACE

 -- <***To be filled in by platform developers***>

 -- USER INTERFACE

 -- Read Interface of FIFO

 -- Clock for Read Interface of FIFO from User

 USER_CLK :in std_logic;

 USER_DATA_NEW :out std_logic;

 USER_NEXT :in std_logic;

 USER_DATA :out std_logic_vector (G_USER_WIDTH - 1 downto 0)

 PACKET_SIZE :out std_logic_vector(15 downto 0)

 -- *** optional ***

 EMPTY_FLAG :out std_logic;

 -- *** optional ***

 FULL_FLAG :out std_logic

);

end entity RX_NODE;

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 67

D.4.4 MHAL FPGA Receive Node – RAM Entity Description
--

-- MHAL FPGA Receive Node - RAM

--

entity MHAL_RX_RAM is

 generic(

 -- Width of MHAL data

 G_USER_WIDTH :natural := 16;

 -- MHAL node logical destination

 G_LOGICAL_DESTINATION :natural := 0

);

 port(

 -- JTR Set INTERFACE

 -- <***To be filled in by platform developers***>

 -- USER INTERFACE

 USER_DATA_NEW :out std_logic;

 USER_CLK :in std_logic;

 USER_ADDR :in std_logic_vector(G_ADDR_WIDTH - 1 downto 0)

 PACKET_SIZE :out std_logic_vector(15 downto 0)

 USER_DATA :out std_logic_vector(G_USER_WIDTH - 1 downto 0)

);

end entity MHAL_RX_RAM;

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 68

D.4.5 MHAL FPGA Receive Node – N-Word Register Entity

Description
--

-- MHAL FPGA Receive Node - N-Word Register

--

entity MHAL_RX_REG is

 generic(

 -- Width of MHAL data

 G_USER_WIDTH :natural := 16;

 -- MHAL node logical destination

 G_LOGICAL_DESTINATION :natural := 0

);

 port(

 -- JTR Set INTERFACE

 -- <***To be filled in by platform developers***>

 -- USER INTERFACE

 -- *** optional ***

 USER_DATA_NEW :out std_logic;

 USER_CLK :in std_logic;

 USER_DATA :out std_logic_vector (G_USER_WIDTH - 1 downto 0)

);

end entity MHAL_RX_REG;

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 69

D.4.6 MHAL FPGA Receive Node – Strobe Entity Description
--

-- MHAL FPGA Receive Node - Strobe

--

entity MHAL_RX_STRB is

 generic(

 -- MHAL node logical destination

 G_LOGICAL_DESTINATION : natural := 0

);

 port(

 -- JTR Set INTERFACE

 -- <***To be filled in by platform developers***>

 -- USER INTERFACE

 USER_DATA_NEW :out std_logic;

 USER_CLK :in std_logic

);

end entity MHAL_RX_STRB;

D.5 DATA TYPES AND EXCEPTIONS
None

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 70

APPENDIX D.A – ABBREVIATIONS AND ACRONYMS
See section Appendix A.A.

APPENDIX D.B – PERFORMANCE SPECIFICATION
Not applicable

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 71

E. MHAL RF CHAIN COORDINATOR API EXTENSION

E.1 INTRODUCTION
The MHAL RF Chain Coordinator API consists of a set of sink and source functions that provide for

coordinated control of a JTRS Communications Channel’s RF resources.

The MHAL RF Chain Coordinator API implementation for the JTR set may be deployed on any of the

CEs.

E.1.1 Overview

This document contains as follows:

a. Section E.1, Introduction, of this document contains the introductory material regarding the

Overview.

b. Section E.2, Services

c. Section E.3, Service Primitives and Attributes, specifies the functions that are provided by the

MHAL RF Chain Coordinator.

d. Section E.4, Interface Definitions

e. Section E.5, Data Types and Exceptions

f. Appendix E.A – Abbreviations and Acronyms

g. Appendix E.B – Performance Specification

h. Appendix E.C – Multi-Command Message Example

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 72

E.2 SERVICES
The API for the MHAL RF Chain Coordinator takes the form of commands. As specified in A.2.1.3.1

MHAL Message Structure the MHAL Message payload contains a sequence of commands that consist

of:

 Command Symbol followed by

 Command Parameter(s) (if applicable)

The Command Symbol values are given by symbolic reference similar to the LD and are predefined

integer constants.

Parameters vary in size but are designed to be an integer multiple of 16 bits.

A message to the MHAL RF Chain Coordinator may contain one or more commands. No delimiters are

required or allowed between commands. Each command in a multi-command message is processed in

the order given.

E.2.1 MHAL RF Chain Coordinator
This feature provides additional capabilities to manage the MHAL RF Chain Coordinator Data Sink.

Support of this feature is through the functions defined in the following sections:

 E.3.1 General Sink Functions

 E.3.2 Supervisory Sink Functions

 E.3.3 General Source Functions

The MHAL RF Chain Coordinator is a Data Sink and is accessible from any CE via the Mhal_Comm.

The MHAL RF Chain Coordinator is associated with one or more Logical Destination (LD) symbolic

references. Each LD can be independently set via the Command symbols.

The symbolic names for the integer constants used as the LDs by the MHAL Communications Function

to route messages to the MHAL RF Chain Coordinator should begin with RFCHAIN.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 73

E.2.2 Sink Functions
The RF Chain General sink functions consist of the following commands in Table 5, which can be called

by other components.

Table 5 – MHAL RF Chain Coordinator General Sink Function Interface

Type* Command Name (Sink) Command Symbol
Parameter

Format / Unit

Parameter

Valid Range

config RFC_DefModulationMode DEFMODMODE Multi-Value

(see E.3.1.1)

RFC_ModulationMode MODMODE Int 16 / N/A 0 – 7

RFC_RxAGCAttackTime** TXAGCATTACKTIME Int 16 / us Not specified

RFC_RxAGCDecayTime** TXAGCDECAYTIME Int 16 / us Not specified

RFC_TxALCAttackTime TXALCATTACKTIME Int 16 / us Not specified

RFC_TxALCDecayTime TXALCDECAYTIME Int 16 / us Not specified

RFC_TxEnvDecayTime TXENVDECAYTIME Int 16 / us Not specified

RFC_TxEnvRiseTime TXENVRISETIME Int 16 / us Not specified

dynamic-D RFC_ChannelFrequency FREQ Unsigned Int

32 / Hz

1 -

4294967295

RFC_ChannelRxModeSet RXMODE None N/A

RFC_ChannelTxModeSet TXMODE None N/A

RFC_TxPower TXPOWER Int 16 / dBW -60 – 60

dynamic-I RFC_ChannelTxKeyDisable TXKEYOFF None N/A

RFC_ChannelTxKeyEnable TXKEYON None N/A

RFC_ConnectTxBlock CONNECTTXBLOCK Int 16 / LD N/A

RFC_MasterExecuteNow MEXECUTE None None

RFC_ReceiverGainControl RXGAIN Int 16 / dBFS Not specified

* "Type" Legend:

config - Channel Configuration Item-command message based

dynamic-D - Delayed Execution-command message based- Execute Now Trigger

dynamic-I - Immediate Execution-command message based

** Optional

The RF Chain Supervisory sink functions consist of the following commands in Table 6, which can be

called by other components.

Table 6 – MHAL RF Chain Coordinator Supervisory Sink Function Interface

Type* Command Name (Sink) Command Symbol
Parameter

Format / Unit

Parameter

Valid Range

dynamic-I RFC_ChannelStandbyModeSet STANDBYMODE None N/A

RFC_TxBusyStatusRequest TXSTAT Int 16 / LD N/A

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 74

Type* Command Name (Sink) Command Symbol
Parameter

Format / Unit

Parameter

Valid Range
* "Type" Legend:

dynamic-I - Immediate Execution-command message based

E.2.3 Source Functions
The RF Chain General source functions consist of the following commands in Table 7, which are used

by the RF Chain.

Table 7 – MHAL RF Chain Coordinator General Source Function Interface

Type* Command (Source) Command Symbol
Parameter

Format / Unit

Parameter

Valid Range

rsp-LD_1 RFC_TxBlocked TXBLOCKED None N/A

rsp-LD_2 RFC_TxBusyStatusResponse TXSTATRSP Int 16 / Status N/A

* "Type" Legend:

rsp-LD_# - Response to the command that containing LD#. The LD# is a sink for this response.

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 75

E.3 SERVICE PRIMITIVES AND ATTRIBUTES
To enhance the readability of this API document and to avoid duplication of data, the type definitions of

all structured types (i.e., structures, typedefs, exceptions, enumerations and unions) used by the Service

Primitives and Attributes have been co-located in section E.5 Data Types and Exceptions. This cross-

reference of types also includes any nested structures in the event of a structure of structures or an array

of structures.

E.3.1 General Sink Functions

E.3.1.1 RFC_DefModulationMode Command

This command defines the initial setup and preset performance configuration for a particular modulation

mode.

E.3.1.1.1 Command Structure

<MHAL Header > <Payload

IU Bit LD Length Command Symbol Parameters

x 1 RFCHAIN 15 17 16 DEFMODMODE 16 ModMode Number 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits Envelope Rise Time 16

 Envelope Fall Time 16

 ALC Attack Gain 16

 ALC Decay Gain 16

 ALC Peak Limit 8 > LSB

E.3.1.1.2 Parameters

Parameter Name Description Type Units Valid

Range

Mod Mode Number Modulation number. This value is used as

the parameter to the MODMODE command.

All subsequent fields are sent to the RF

devices when this MODMODE number is

selected.

Int 16 N/A 0 – 7

Envelope Rise Time The power amplifier transmit signal

envelope rise time of the RF Chain Channel.

Int 16 us Not

specified

Envelope Fall Time The power amplifier transmit signal

envelope decay time of the RF Chain

Channel.

Int 16 us Not

specified

ALC Attack Gain The power amplifier ALC attack time of the

RF Chain Channel.

Int 16 us Not

specified

ALC Decay Gain The power amplifier ALC decay time of the

RF Chain Channel.

Int 16 us Not

specified

ALC Peak Limit The power amplifier ALC peak limit of the Int 8 dBm Not

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 76

RF Chain Channel. specified

E.3.1.1.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 77

E.3.1.2 RFC_ModulationMode Command

This command sets the modulation mode of the RF Chain Channel to the value supplied.

The values that are sent to the RF devices are controlled by the waveform’s definition of the

MODMODE through the DEFMODMODE command.

This command allows for individual configuration of the modulation mode.

E.3.1.2.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 MODMODE 16 Modulation Mode 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.2.2 Parameters

Parameter

Name

Description Type Units Valid

Range

Modulation

Mode

The same value as the parameter

ModMode Number defined in

the DEFMODMODE command.

This causes this configuration of

the RF devices to occur.

Int 16 N/A 0 – 7

E.3.1.2.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 78

E.3.1.3 RFC_RxAGCAttackTime Command (optional)
This command sets the power amplifier AGC attack time of the RF Chain Channel to the value supplied.

This command allows for individual configuration of the AGC attack time.

E.3.1.3.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 RXAGCATTACKTIME 16 AGC Attack Time 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.3.2 Parameters

Parameter

Name

Description Type Units Valid Range

AGC Attack

Time

A 16-bit integer representing the

AGC attack time.

Int 16 us Not specified

E.3.1.3.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 79

E.3.1.4 RFC_RxAGCDecayTime Command (optional)
This command sets the power amplifier AGC decay time of the RF Chain Channel to the value supplied.

This command allows for individual configuration of the AGC decay time.

E.3.1.4.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 RXAGCDECAYTIME 16 AGC Decay Time 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.4.2 Parameters

Parameter

Name

Description Type Units Valid Range

AGC Decay

Time

A 16-bit integer representing the

AGC decay time.

Int16 us Not specified

E.3.1.4.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 80

E.3.1.5 RFC_TxALCAttackTime Command

This command sets the power amplifier ALC attack time of the RF Chain Channel to the value supplied.

This command allows for individual configuration of the ALC attack time.

E.3.1.5.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 TXALCATTACKTIME 16 ALC Attack Time 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.5.2 Parameters

Parameter

Name

Description Type Units Valid Range

ALC Attack

Time

A 16-bit integer representing the

ALC attack time.

Int 16 us Not specified

E.3.1.5.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 81

E.3.1.6 RFC_TxALCDecayTime Command

This command sets the power amplifier ALC decay time of the RF Chain Channel to the value supplied.

This command allows for individual configuration of the ALC decay time.

E.3.1.6.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 TXALCDECAYTIME 16 ALC Decay Time 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.6.2 Parameters

Parameter

Name

Description Type Units Valid Range

ALC Decay

Time

A 16-bit integer representing the

ALC decay time.

Int16 us Not specified

E.3.1.6.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 82

E.3.1.7 RFC_TxEnvDecayTime Command

This command sets the power amplifier transmit signal envelope decay time of the RF Chain Channel to

the value supplied.

This command allows for individual configuration of the envelope decay time.

E.3.1.7.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 TXENVDECAYTIME 16 Envelope Decay Time 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.7.2 Parameters

Parameter

Name

Description Type Units Valid Range

Envelope Decay

Time

A 16-bit integer representing the

envelope decay time.

Int 16 us Not specified

E.3.1.7.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 83

E.3.1.8 RFC_TxEnvRiseTime Command

This command sets the power amplifier transmit signal envelope rise time of the RF Chain Channel to

the value supplied.

This command allows for individual configuration of the envelope rise time.

E.3.1.8.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 TXENVRISETIME 16 Envelope Rise Time 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.8.2 Parameters

Parameter

Name

Description Type Units Valid Range

Envelope Rise

Time

A 16-bit integer representing the

Envelope rise time.

Int 16 us Not specified

E.3.1.8.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 84

E.3.1.9 RFC_ChannelFrequency Command

This command sets the Channel RF frequency to the value supplied.

E.3.1.9.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 10 16 FREQ 16 frequency 32

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.9.2 Parameters

Parameter

Logical Name

Description Type Units Valid Range

frequency Value representing frequency. Unsigned Int 32 Hz 0 - 4294967295

E.3.1.9.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 85

E.3.1.10 RFC_ChannelRxModeSet Command

This command sets the RF mode to RX.

If the current mode is TX or Standby, this command toggles the setting to RX.

If the current mode is RX, this command has no effect.

E.3.1.10.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol

x 1 RFCHAIN 15 6 16 RXMODE 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.10.2 Parameters

None

E.3.1.10.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 86

E.3.1.11 RFC_ChannelTxModeSet Command

This command sets the RF mode to TX.

If the current mode is RX or Standby, this command toggles the setting to TX.

If the current mode is TX, this command has no effect.

E.3.1.11.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol

x 1 RFCHAIN 15 6 16 TXMODE 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.11.2 Parameters

None

E.3.1.11.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 87

E.3.1.12 RFC_TxPower Command

This command sets the transmitter output power to the value supplied.

E.3.1.12.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 TXPOWER 16 Tx Output Power 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.12.2 Parameters

Parameter

Name

Description Type Units Valid

Range

Tx Output Power Value that will be set as the

transmitter output Power.

Int 16 dBW

(i.e. dB relative to 1 Watt)

N/A

E.3.1.12.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 88

E.3.1.13 RFC_ChannelTxKeyDisable Command

This command disables the transmit key and keeps RF from being put out over the air. The same source

that initiated the key should be used to terminate the transmit key.

E.3.1.13.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol

x 1 RFCHAIN 15 6 16 TXKEYOFF 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.13.2 Parameters

None

E.3.1.13.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 89

E.3.1.14 RFC_ChannelTxKeyEnable Command

This command enables the transmit key and allows RF to be put out over the air. The same source that

initiated the key should be used to terminate the transmit key.

E.3.1.14.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol

x 1 RFCHAIN 15 6 16 TXKEYON 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.14.2 Parameters

None

E.3.1.14.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 90

E.3.1.15 RFC_ConnectTxBlock Command

This command identifies a LD that is to receive a TX Mode Blocked (TXBLOCKED) response. This is

used by all waveforms to be able to react to a blocked transmit asset.

E.3.1.15.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 CONNECTTXBLOCK 16 LD 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.15.2 Parameters

Parameter

Name

Description Type Units Valid

Range

LD Requestor’s logical destination

that receives the TX Mode

Blocked response.

Int 16 LD N/A

E.3.1.15.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 91

E.3.1.16 RFC_MasterExecuteNow Command

This command causes all of the previously issued deferred commands (i.e. type dynamic-D) to execute in

the RF Chain. The RF Chain Coordinator shall synchronize all MEXECUTE messages.

E.3.1.16.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol

x 1 RFCHAIN 15 6 16 MEXECUTE 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.16.2 Parameters

None

E.3.1.16.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 92

E.3.1.17 RFC_ReceiverGainControl Command

This command sets the receiver gain to the value supplied. This command is to supplement not to

override HW AGC.

E.3.1.17.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 RXGAIN 16 Receive Gain 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.1.17.2 Parameters

Parameter

Logical Name

Description Type Units Valid

Range

Receive Gain A 16-bit integer value that will

be set as receive gain.

Int 16 dBFS

(i.e. dB relative to full scale

output)

Not

specified

E.3.1.17.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 93

E.3.2 Supervisory Sink Functions

E.3.2.1 RFC_ChannelStandbyModeSet Command

This command sets the RF mode to Standby.

If the current mode is RX or TX, this command toggles the setting to Standby.

If the current mode is Standby, this command has no effect.

E.3.2.1.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol

x 1 RFCHAIN 15 6 16 STANDBYMODE 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.2.1.2 Parameters

None

E.3.2.1.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 94

E.3.2.2 RFC_TxBusyStatusRequest Command

This command determines if the transmit resources are available for the use by the waveform.

E.3.2.2.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 8 16 TXSTAT 16 LD 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits

E.3.2.2.2 Parameters

Parameter

Name

Description Type Units Valid

Range

LD Logical destination where the

transmit status response is

reported.

Int 16 LD N/A

E.3.2.2.3 Originator

Service User

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 95

E.3.3 General Source Functions

E.3.3.1 RFC_TxBlocked Command

This command is used to report that Transmit Mode (TXMODE) cannot be entered or is lost.

The MHAL RF Chain Coordinator provides a TX Mode Blocked (TXBLOCKED) response subsequent

to the MEXECUTE command related to TXMODE to indicate that some resource in the RF Chain is

blocking the transmit. When this is sent, the RF Chain is in RXMODE. The waveform reestablishes full

operation of the RXMODE characteristics. This occurs while in TXMODE if the transmit asset is lost.

E.3.3.1.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol

x 1 resp_LD 15 6 16 TXBLOCKED 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits
Note3: Where resp_LD is the LD that was provided by the Connect Transmit Mode Blocked (CONNECTTXBLOCK) command.

E.3.3.1.2 Parameters

None

E.3.3.1.3 Originator

Service Provider

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 96

E.3.3.2 RFC_TxBusyStatusResponse Command

This command is used to report whether resources are available for use by the waveform.

E.3.3.2.1 Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 resp_LD 15 8 16 TXSTATRSP 16 Status 16

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits
Note3: Where resp_LD is the LD that was provided by the TXSTAT command.

E.3.3.2.2 Parameters

Parameter

Name

Description Type Units Valid

Range

Status Availability of resources for use

by waveform

Int 16 0 = Available

1 = Busy

0, 1

E.3.3.2.3 Originator

Service Provider

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 97

E.4 INTERFACE DEFINITIONS
None

E.5 DATA TYPES AND EXCEPTIONS
Not applicable

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 98

APPENDIX E.A – ABBREVIATIONS AND ACRONYMS
See section Appendix A.A.

APPENDIX E.B – PERFORMANCE SPECIFICATION
Not applicable

APPENDIX E.C – MULTI-COMMAND MESSAGE EXAMPLE
This example shows the MHAL message layout of three commands sent via one Mhal_Comm call to the

RF Chain Coordinator

Table 8 – Example Multi-Message Command Structure

<MHAL Header > <Payload >

IU Bit LD Length Command Symbol Parameter

x 1 RFCHAIN 15 16 16 RXMODE 16 N/A** 0

 MODMODE 16 Modulation Mode 16

 FREQ 16 frequency 32

Note1: Where x = 0 or 1 (See A.2.1.3.1.1 MHAL Message IU Bit)
Note2: Subscript indicates field width in bits
** This field is noted for table format consistency; the RFC_ChannelRxModeSet Command has no parameters.

In Table 8 the multi-command message includes the RFC_ChannelRxModeSet Command,

Modem Hardware Abstraction Layer API Version: 2.13.2

 26 June 2013

Statement A- Approved for public release; distribution is unlimited (17 July 2013). 99

RFC_ModulationMode Command, and RFC_ChannelFrequency Command.

